Alignment And Overlay Accuracy

Nanometer Precision. Zero Overlay Errors. Layered Perfection Starts Here.

Alignment and overlay accuracy

ALIGN EVERY LAYER. LOCK EVERY LINE.

Alignment and overlay accuracy 2

In semiconductor manufacturing, the success of multi-layer lithography depends on one thing: precision overlay. A nanometer-scale misalignment can trigger a cascade of failures, shorts, opens, or pattern mismatch. Traditional overlay systems, though reliable, are static and can miss real-time deviations.

AI-powered Alignment and Overlay Accuracy solutions use real-time computer vision to detect and correct misalignment during lithography. By continuously comparing new patterns with reference layers, AI vision ensures every overlay falls within strict tolerances, even on advanced nodes.

This reduces overlay-related yield loss, cuts rework cycles, and ensures multi-patterning integrity.

OUR HOLISTIC VIEW TO CHALLENGES & FEATURES

Challenges

Sub-Nanometer Misalignment Tolerance

Sub-Nanometer Misalignment Tolerance

At advanced nodes (5nm/3nm), even tiny overlay shifts can cause electrical shorts or performance drift.

Tool Drift and Focus Shift

Tool Drift and Focus Shift

Thermal expansion or tool wear causes gradual shifts that traditional static calibration can’t catch.

Delayed Detection of Pattern Mismatch

Delayed Detection of Pattern Mismatch

Without real-time feedback, overlay errors often go unnoticed until after etching or metrology.

Multi-Pattern Complexity

Multi-Pattern Complexity

Multiple exposure passes increase the chance of cumulative misalignment, especially on dense layers.

Features

Live Pattern Comparison with Reference Layers

Live Pattern Comparison with Reference Layers

Computer vision verifies overlay precision during exposure, not just in post-processing.

Nanometer-Level Accuracy

Nanometer-Level Accuracy

AI models trained to identify and measure overlay deviation at single-digit nanometer tolerances.

Tool Behavior Profiling

Tool Behavior Profiling

Learns and predicts overlay drift based on historical tool movement, exposure conditions, and material response.

Integrated Alignment Feedback Loop

Integrated Alignment Feedback Loop

Feeds deviation data into stepper/aligner systems for automatic compensation and dynamic realignment.

WHO BENEFITS FROM ALIGNMENT AND OVERLAY ACCURACY?

Alignment and overlay accuracy 3
  • Lithography Engineers Achieve tighter overlay tolerances and prevent critical dimension (CD) failures.
  • Yield Enhancement Teams Identify overlay-induced pattern defects early and reduce electrical test failures.
  • Process Integration Engineers  Ensure multilayer processes such as FinFET, EUV, and BEOL stack up with maximum precision.

BUILDING AND DEPLOYING PROCESS

Alignment and overlay accuracy 4
Reference Layer Integration

Reference Layer Integration

We begin by integrating CAD-based reference layers or GDSII data to set visual baselines for overlay comparison.

Sub-Pixel Camera Calibration

Sub-Pixel Camera Calibration

Specialized cameras with nanometer resolution are installed near lithography tools. Calibration includes pixel-level correction and motion compensation for fast-moving wafer stages.

Model Training with Layer Mismatch Samples

Model Training with Layer Mismatch Samples

Using archived mismatch incidents, our AI is trained to distinguish between acceptable variation and true overlay faults across complex geometries and resist layers.

Real-Time Overlay Feedback Control

Real-Time Overlay Feedback Control

As patterns are exposed, real-time visual feedback is compared to reference alignment. Detected deviation values are immediately sent to the scanner or aligner system for correction during the same pass.

Insights on innovation

Stay updated with the trending and most impactful tech insights. Check out the expert analyses, real-world applications, and forward-thinking ideas that shape the future of AI Computer Vision and innovation.

October 1, 2025 - 8 minutes to read

Semiconductor Fab in 2025 – Key Trends in Vision AI & Inspection Technologies

Walk into a semiconductor fabrication plant in 2025 and you’ll see something that looks more like a science fiction set than a factory. Robots glide across spotless cleanrooms, wafers are carried through vacuum-sealed chambers, and machines whisper in precision rhythms. Each wafer that enters the fab is a canvas on which billions of transistors will […]

Semiconductor
Read More

Ruchir Kakkad

CEO & Co-founder

October 1, 2025 - 8 minutes to read

How Computer Vision Is Transforming Semiconductor Fabrication Plants

Semiconductor fabrication plants, commonly called fabs, are some of the most complex and expensive factories ever built. Inside cleanrooms that are thousands of times cleaner than a hospital operating room, wafers of silicon are transformed into chips that power the world’s smartphones, cars, medical devices, and satellites. Every wafer goes through hundreds of steps, lithography, […]

Read More

Ruchir Kakkad

CEO & Co-founder

August 29, 2025 - 8 minutes to read

AI Vision in Chemical Mechanical Planarization (CMP) Quality Monitoring

Every chip in your phone, your laptop, or even in a satellite, begins as a plain slice of silicon. But before that slice can become the heart of advanced electronics, it has to go through a series of complex processes. One of the least understood, yet most critical of these, is called Chemical Mechanical Planarization, […]

Semiconductor
Read More

Ruchir Kakkad

CEO & Co-founder

Whatsapp Img